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OutlineOutline

u Quick review of current effort

u Multifunction flight wing configurations

u Thoughts on actuation
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Distributed Modeling and Control of Adaptive WingsDistributed Modeling and Control of Adaptive Wings
Virginia Tech (Virginia Tech (RobertshawRobertshaw, , GernGern, , KapaniaKapania))

Program Goal:
Determination of minimum control energy
required to increase  maneuverability of an
aileronless UCAV using smart structures
and morphing airfoil technology

Objectives:
u Mimic the characteristics of wings with control

surfaces
u Determine actuation energy, forces, moments,

displacements, and time constants needed for an
adaptive wing approach

u Investigate performance and maneuverability
improvements of a morphing wing vehicle ( no
aileron control)



Department of
Mechanical Engineering 4

Department of Aerospace and
Ocean Engineering CIMSS

Problem ApproachProblem Approach

Task 1: Dynamics & Control
Determine control algorithms to
minimize energy input for
maneuver control.

Task 3: Adaptive Structures
Determine the optimum network of
sensors and actuators for a given
morphing structure to control vehicle
maneuver and cruise performance.

Task 2: Aeroservoelasticity
Aeroelastic effects of structural
changes and use of energy transfer
between structure and airflow to
facilitate structural morphing.

Supportive Task: Aerodynamics
Provide expertise in steady and
unsteady aerodynamic loads for all
tasks by identifying/adapting
existing aerodynamic tools.

Determination of force, energy, displacement, and
time constant requirements for smart wings:
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Smart Wing ActuationSmart Wing Actuation
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u Constant torque actuation of outboard wing section
- torque applied close to trailing edge

(relatively flexible structure)

- leading edge actuation less effective

(higher structural stiffness)

Twist and camber actuation more effective then individual effects 

Need to understand
 where to actuate 
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Smart Wing ActuationSmart Wing Actuation

u Wing deformation due to torque actuation:

{q} generalized displacement vector

[K] wing stiffness matrix

{P} generalized load vector from actuation forces

u Flexible wing actuation → consideration of aerodynamic loads:

{qdyn} dynamic pressure

u Total wing deformation due to actuation and aerodynamic loads:

q{ }= K[ ]−1 P{ }

Ptot qdyn( ){ }= Pact{ }+ Paero qdyn( ){ }

q{ }= K[ ]−1 Pact{ }+ Paero qdyn( ){ }( )
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Smart Wing ActuationSmart Wing Actuation

Constant torque actuation on
outboard wing (300 lb-ft/ft)
No aerodynamic loads
cL = 0.482
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Constant torque actuation on
outboard wing (300 lb-ft/ft)
Aerodynamic loads (5·qref)
cL = 0.460
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Trailing Edge FlapTrailing Edge Flap
Performance EvaluationPerformance Evaluation

3d Pressure distribution Hinge moment
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Actuation energy:
  
∆Wflap = M flap δ( )

0

δ

∫ dδ = ∆S flap panel q∆cp δ( )x flap paneldδ
0

δ

∫
flap panels
∑
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Morphing WingMorphing Wing
Performance EvaluationPerformance Evaluation

3d Pressure distribution Wing morphing

Actuation energy:
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∆W = ∆Waerodr
panels
∑ = ∆Spanelq∆cp (r )

r1

r2

∫ dr
panels
∑

u Linear increase of outboard
wing camber

u Constant strain actuation of
upper and lower skins

u Increase of wing cL from 0.3
to 0.47

u Equivalent to TE flap 10°
down
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Actuation Energy and Peak PowerActuation Energy and Peak Power
Draft CalculationsDraft Calculations

Trailing edge flap Morphing wing

∆χΛ
0.17 (0.3 to 0.47) 0.17 (0.3 to 0.47)

Actuation Flap10º down Increased outboard
wing camber
(eq. flap10º down)

Actuation energy 136.99 ft-lbf
(185.732 J)

423.13 ft-lbf
(573.687 J)

Peak power
(based on 90º/sec
flap rotation)

1232.90 ft-lbf/sec
(2.24 HP)

3808.17 ft-lbf/sec
(6.92 HP)

Hinge moment 1302.7 ft-lbf
(15632 in-lbf)

N/A

DRAFT
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Multimission Multimission VehicleVehicle
inspired by natureinspired by nature

Pigeon Falcon Morph-Eagle

Loitering

Transition

Strike
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MultimissionMultimission Vehicle Vehicle

adaptive winglet

outboard wing section w/
variable twist and camber

adaptive winglet acts as
aileron during strike mission

morphing wing planform

Loitering

Strike
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Multimission Multimission VehicleVehicle
model being usedmodel being used
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Lessons learned fromLessons learned from
Structural ControlStructural Control

n Unobservable if y  = x
2

n Becomes controllable if u  is

   also applied at x
1

n Uncontrollable for u  at x
2

m 1

m 2

m 1
m 2

x1 x2

x2

x1

 u
 u

An example of an uncontrollable

mechanical system

An example of a controllable

mechanical system

Controllability:
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u The controllability increase obtained by integrating the
active member into the structure can be illustrated by
calculating the gross measure of controllability

u Adding the active member into the control system
significantly increases the controllability of the torsional
modes for a marginal (0.1%) increase in power.

Controllability MeasureControllability Measure

Gross

Controllability

     Mode
1st torsional

1st bending

2nd torsional

1st plate

2nd bending

Slewing

Actuator
     8.62

     155.16

     1.11

     17.28

     80.29

+ Active

Member
     109.55

     156.42

     39.81

     54.31

     91.61
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Actuator Location Makes aActuator Location Makes a
Critical DifferenceCritical Difference

u Dynamics are rigid body
plus flexible modes

u Rigid body actuator has
poor control authority over
torsional modes

u Results of using
controllability are improved
performance for little cost
from a small actuator in
exactly the right spot

u Placement of actuators is
key and determined by
dynamics

Rigid body actuator 120 watts

PZT Actuators 0.3 watts

30% increase in performance
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What are the steps to getWhat are the steps to get
there? - an actuator viewthere? - an actuator view

u Move with out fighting internal strain

u Go with the flow (use aero forces)

u Determine how much motion is needed?

u Determine energy required to go from A to
B to A

u Energy (force, stroke, time constant) and
location are the key issues to be sorted
out before proceeding.


